13 research outputs found

    DIGITAL ELEVATION MODEL VALIDATION WITH NO GROUND CONTROL: APPLICATION TO THE TOPODATA DEM IN BRAZIL

    Get PDF
    Digital Elevation Model (DEM) validation is often carried out by comparing thedata with a set of ground control points. However, the quality of a DEM can also beconsidered in terms of shape realism. Beyond visual analysis, it can be verified thatphysical and statistical properties of the terrestrial relief are fulfilled. This approachis applied to an extract of Topodata, a DEM obtained by resampling the SRTMDEM over the Brazilian territory with a geostatistical approach. Several statisticalindicators are computed, and they show that the quality of Topodata in terms ofshape rendering is improved with regards to SRTM

    Etude de la qualitĂ© gĂ©omorphologique de modĂšles numĂ©riques de terrain issus de l’imagerie spatiale

    No full text
    The production of Digital Elevation Models (DEMs) has undergone significant evolution duringthe last two decades resulting from a growing demand for scientific as well as industrial purposes.Many Earth observation satellites, using optical and radar sensors, have enabled the production ofDEMs covering most of the Earth’s surface. The algorithms of image and point cloud processing havealso undergone significant evolution. This progress has provided DEMs on different scales, which canfulfill the requirements of many users. The applications based on geomorphology have benefitted fromthis evolution. Indeed, these applications concentrate specifically on landforms for which the DEMconstitutes a basic data.The aim of this study is to assess the impact of the parameters of DEM production byphotogrammetry and InSAR on position and shape quality. The position quality, assessed by DEMproducers, is not sufficient for the evaluation of shape quality. Thus, the evaluation methods ofposition and shape quality and the difference between them are described. A novel method of internalvalidation, which does not require reference data, is proposed. Then, the impact of image matchingand interferometric processing parameters as well as resampling, on elevation and shapes, is assessed.Finally, we conclude on recommendations on how to choose the production parameters correctly,particularly for photogrammetry.We observe little impact from most of the parameters on the elevation, except InSAR parameters.On the other hand, there is a significant impact on the elevation derivatives. The impact of matchingparameters presents a strong dependence on the terrain morphology and the landcover. Therefore,these parameters have to be selected by taking into account these two factors. The effect ofinterferometric processing manifests by phase unwrapping errors that mainly affect the elevation andless the derivatives. The interpolation methods and the mesh size present a small impact on theelevation and a significant impact on the derivatives. Indeed, the value of the derivatives and theirquality depend directly on the mesh size. The selection of this size has to be made according to theforeseen application. Finally, we conclude that these parameters are interdependent and can havesimilar effects. They must be selected according to the foreseen application, the terrain morphologyand the landcover in order to minimize the error in the final results and the conclusions.La production de ModĂšles NumĂ©riques de Terrain (MNT) a subi d’importantes Ă©volutions durant les deux derniĂšres dĂ©cennies en rĂ©ponse Ă  une demande croissante pour des besoins scientifiques et industriels. De nombreux satellites d’observation de la Terre, utilisant des capteurs tant optiques que radar, ont permis de produire des MNT couvrant la plupart de la surface terrestre. De plus, les algorithmes de traitement d’images et de nuages de points ont subi d’importants dĂ©veloppements. Ces Ă©volutions ont fourni des MNT Ă  diffĂ©rentes Ă©chelles pour tout utilisateur. Les applications basĂ©es sur la gĂ©omorphologie ont profitĂ© de ces progrĂšs. En effet, ces applications exploitent les formes du terrain dont le MNT constitue une donnĂ©e de base. Cette Ă©tude a pour objectif d’évaluer l’impact des paramĂštres de production de MNT par photogrammĂ©trie et par InSAR sur la qualitĂ© de position et de forme de ces modĂšles. La qualitĂ© de position, Ă©valuĂ©e par les producteurs de MNT, n’est pas suffisante pour Ă©valuer la qualitĂ© des formes. Ainsi, nous avons dĂ©crit les mĂ©thodes d’évaluation de la qualitĂ© de position et de forme et la diffĂ©rence entre elles. Une mĂ©thode originale de validation interne, qui n’exige pas de donnĂ©es de rĂ©fĂ©rence, a Ă©tĂ© proposĂ©e. Ensuite, l’impact des paramĂštres de l’appariement stĂ©rĂ©oscopique, du traitement interfĂ©romĂ©trique ainsi que du rĂ©Ă©chantillonnage, sur l’altitude et les formes, a Ă©tĂ© Ă©valuĂ©. Finalement, nous avons conclu sur des recommandations pour choisir correctement les paramĂštres de production, en particulier en photogrammĂ©trie.Nous avons observĂ© un impact nĂ©gligeable de la plupart des paramĂštres sur l’altitude, Ă  l’exception de ceux de l’InSAR. Par contre, un impact significatif existe sur les dĂ©rivĂ©es de l’altitude. L’impact des paramĂštres d’appariement prĂ©sente une forte dĂ©pendance avec la morphologie du terrain et l’occupation du sol. Ainsi, le choix de ces paramĂštres doit ĂȘtre effectuĂ© en prenant en considĂ©ration ces deux facteurs. L’effet des paramĂštres du traitement interfĂ©romĂ©trique se manifeste par des erreurs de dĂ©roulement de phase qui affectent principalement l’altitude et peu les dĂ©rivĂ©es. Les mĂ©thodes d’interpolation et la taille de maille prĂ©sentent un impact faible sur l’altitude et important sur ses dĂ©rivĂ©es. En effet, leur valeur et leur qualitĂ© dĂ©pendent directement de la taille de maille. Le choix de cette taille doit s’effectuer selon les besoins de l’application visĂ©e. Enfin, nous avons conclu que ces paramĂštres sont interdĂ©pendants et peuvent avoir des effets similaires. Leur choix doit ĂȘtre effectuĂ© en prenant en considĂ©ration Ă  la fois l’application concernĂ©e, la morphologie du terrain et son occupation du sol afin de minimiser l’erreur des rĂ©sultats finaux et des conclusions

    Study on the geomorphological quality of digital terrain models derived from space imagery

    No full text
    La production de ModĂšles NumĂ©riques de Terrain (MNT) a subi d’importantes Ă©volutions durant les deux derniĂšres dĂ©cennies en rĂ©ponse Ă  une demande croissante pour des besoins scientifiques et industriels. De nombreux satellites d’observation de la Terre, utilisant des capteurs tant optiques que radar, ont permis de produire des MNT couvrant la plupart de la surface terrestre. De plus, les algorithmes de traitement d’images et de nuages de points ont subi d’importants dĂ©veloppements. Ces Ă©volutions ont fourni des MNT Ă  diffĂ©rentes Ă©chelles pour tout utilisateur. Les applications basĂ©es sur la gĂ©omorphologie ont profitĂ© de ces progrĂšs. En effet, ces applications exploitent les formes du terrain dont le MNT constitue une donnĂ©e de base. Cette Ă©tude a pour objectif d’évaluer l’impact des paramĂštres de production de MNT par photogrammĂ©trie et par InSAR sur la qualitĂ© de position et de forme de ces modĂšles. La qualitĂ© de position, Ă©valuĂ©e par les producteurs de MNT, n’est pas suffisante pour Ă©valuer la qualitĂ© des formes. Ainsi, nous avons dĂ©crit les mĂ©thodes d’évaluation de la qualitĂ© de position et de forme et la diffĂ©rence entre elles. Une mĂ©thode originale de validation interne, qui n’exige pas de donnĂ©es de rĂ©fĂ©rence, a Ă©tĂ© proposĂ©e. Ensuite, l’impact des paramĂštres de l’appariement stĂ©rĂ©oscopique, du traitement interfĂ©romĂ©trique ainsi que du rĂ©Ă©chantillonnage, sur l’altitude et les formes, a Ă©tĂ© Ă©valuĂ©. Finalement, nous avons conclu sur des recommandations pour choisir correctement les paramĂštres de production, en particulier en photogrammĂ©trie.Nous avons observĂ© un impact nĂ©gligeable de la plupart des paramĂštres sur l’altitude, Ă  l’exception de ceux de l’InSAR. Par contre, un impact significatif existe sur les dĂ©rivĂ©es de l’altitude. L’impact des paramĂštres d’appariement prĂ©sente une forte dĂ©pendance avec la morphologie du terrain et l’occupation du sol. Ainsi, le choix de ces paramĂštres doit ĂȘtre effectuĂ© en prenant en considĂ©ration ces deux facteurs. L’effet des paramĂštres du traitement interfĂ©romĂ©trique se manifeste par des erreurs de dĂ©roulement de phase qui affectent principalement l’altitude et peu les dĂ©rivĂ©es. Les mĂ©thodes d’interpolation et la taille de maille prĂ©sentent un impact faible sur l’altitude et important sur ses dĂ©rivĂ©es. En effet, leur valeur et leur qualitĂ© dĂ©pendent directement de la taille de maille. Le choix de cette taille doit s’effectuer selon les besoins de l’application visĂ©e. Enfin, nous avons conclu que ces paramĂštres sont interdĂ©pendants et peuvent avoir des effets similaires. Leur choix doit ĂȘtre effectuĂ© en prenant en considĂ©ration Ă  la fois l’application concernĂ©e, la morphologie du terrain et son occupation du sol afin de minimiser l’erreur des rĂ©sultats finaux et des conclusions.The production of Digital Elevation Models (DEMs) has undergone significant evolution duringthe last two decades resulting from a growing demand for scientific as well as industrial purposes.Many Earth observation satellites, using optical and radar sensors, have enabled the production ofDEMs covering most of the Earth’s surface. The algorithms of image and point cloud processing havealso undergone significant evolution. This progress has provided DEMs on different scales, which canfulfill the requirements of many users. The applications based on geomorphology have benefitted fromthis evolution. Indeed, these applications concentrate specifically on landforms for which the DEMconstitutes a basic data.The aim of this study is to assess the impact of the parameters of DEM production byphotogrammetry and InSAR on position and shape quality. The position quality, assessed by DEMproducers, is not sufficient for the evaluation of shape quality. Thus, the evaluation methods ofposition and shape quality and the difference between them are described. A novel method of internalvalidation, which does not require reference data, is proposed. Then, the impact of image matchingand interferometric processing parameters as well as resampling, on elevation and shapes, is assessed.Finally, we conclude on recommendations on how to choose the production parameters correctly,particularly for photogrammetry.We observe little impact from most of the parameters on the elevation, except InSAR parameters.On the other hand, there is a significant impact on the elevation derivatives. The impact of matchingparameters presents a strong dependence on the terrain morphology and the landcover. Therefore,these parameters have to be selected by taking into account these two factors. The effect ofinterferometric processing manifests by phase unwrapping errors that mainly affect the elevation andless the derivatives. The interpolation methods and the mesh size present a small impact on theelevation and a significant impact on the derivatives. Indeed, the value of the derivatives and theirquality depend directly on the mesh size. The selection of this size has to be made according to theforeseen application. Finally, we conclude that these parameters are interdependent and can havesimilar effects. They must be selected according to the foreseen application, the terrain morphologyand the landcover in order to minimize the error in the final results and the conclusions

    Etude de la qualitĂ© gĂ©omorphologique de modĂšles numĂ©riques de terrain issus de l’imagerie spatiale

    No full text
    The production of Digital Elevation Models (DEMs) has undergone significant evolution duringthe last two decades resulting from a growing demand for scientific as well as industrial purposes.Many Earth observation satellites, using optical and radar sensors, have enabled the production ofDEMs covering most of the Earth’s surface. The algorithms of image and point cloud processing havealso undergone significant evolution. This progress has provided DEMs on different scales, which canfulfill the requirements of many users. The applications based on geomorphology have benefitted fromthis evolution. Indeed, these applications concentrate specifically on landforms for which the DEMconstitutes a basic data.The aim of this study is to assess the impact of the parameters of DEM production byphotogrammetry and InSAR on position and shape quality. The position quality, assessed by DEMproducers, is not sufficient for the evaluation of shape quality. Thus, the evaluation methods ofposition and shape quality and the difference between them are described. A novel method of internalvalidation, which does not require reference data, is proposed. Then, the impact of image matchingand interferometric processing parameters as well as resampling, on elevation and shapes, is assessed.Finally, we conclude on recommendations on how to choose the production parameters correctly,particularly for photogrammetry.We observe little impact from most of the parameters on the elevation, except InSAR parameters.On the other hand, there is a significant impact on the elevation derivatives. The impact of matchingparameters presents a strong dependence on the terrain morphology and the landcover. Therefore,these parameters have to be selected by taking into account these two factors. The effect ofinterferometric processing manifests by phase unwrapping errors that mainly affect the elevation andless the derivatives. The interpolation methods and the mesh size present a small impact on theelevation and a significant impact on the derivatives. Indeed, the value of the derivatives and theirquality depend directly on the mesh size. The selection of this size has to be made according to theforeseen application. Finally, we conclude that these parameters are interdependent and can havesimilar effects. They must be selected according to the foreseen application, the terrain morphologyand the landcover in order to minimize the error in the final results and the conclusions.La production de ModĂšles NumĂ©riques de Terrain (MNT) a subi d’importantes Ă©volutions durant les deux derniĂšres dĂ©cennies en rĂ©ponse Ă  une demande croissante pour des besoins scientifiques et industriels. De nombreux satellites d’observation de la Terre, utilisant des capteurs tant optiques que radar, ont permis de produire des MNT couvrant la plupart de la surface terrestre. De plus, les algorithmes de traitement d’images et de nuages de points ont subi d’importants dĂ©veloppements. Ces Ă©volutions ont fourni des MNT Ă  diffĂ©rentes Ă©chelles pour tout utilisateur. Les applications basĂ©es sur la gĂ©omorphologie ont profitĂ© de ces progrĂšs. En effet, ces applications exploitent les formes du terrain dont le MNT constitue une donnĂ©e de base. Cette Ă©tude a pour objectif d’évaluer l’impact des paramĂštres de production de MNT par photogrammĂ©trie et par InSAR sur la qualitĂ© de position et de forme de ces modĂšles. La qualitĂ© de position, Ă©valuĂ©e par les producteurs de MNT, n’est pas suffisante pour Ă©valuer la qualitĂ© des formes. Ainsi, nous avons dĂ©crit les mĂ©thodes d’évaluation de la qualitĂ© de position et de forme et la diffĂ©rence entre elles. Une mĂ©thode originale de validation interne, qui n’exige pas de donnĂ©es de rĂ©fĂ©rence, a Ă©tĂ© proposĂ©e. Ensuite, l’impact des paramĂštres de l’appariement stĂ©rĂ©oscopique, du traitement interfĂ©romĂ©trique ainsi que du rĂ©Ă©chantillonnage, sur l’altitude et les formes, a Ă©tĂ© Ă©valuĂ©. Finalement, nous avons conclu sur des recommandations pour choisir correctement les paramĂštres de production, en particulier en photogrammĂ©trie.Nous avons observĂ© un impact nĂ©gligeable de la plupart des paramĂštres sur l’altitude, Ă  l’exception de ceux de l’InSAR. Par contre, un impact significatif existe sur les dĂ©rivĂ©es de l’altitude. L’impact des paramĂštres d’appariement prĂ©sente une forte dĂ©pendance avec la morphologie du terrain et l’occupation du sol. Ainsi, le choix de ces paramĂštres doit ĂȘtre effectuĂ© en prenant en considĂ©ration ces deux facteurs. L’effet des paramĂštres du traitement interfĂ©romĂ©trique se manifeste par des erreurs de dĂ©roulement de phase qui affectent principalement l’altitude et peu les dĂ©rivĂ©es. Les mĂ©thodes d’interpolation et la taille de maille prĂ©sentent un impact faible sur l’altitude et important sur ses dĂ©rivĂ©es. En effet, leur valeur et leur qualitĂ© dĂ©pendent directement de la taille de maille. Le choix de cette taille doit s’effectuer selon les besoins de l’application visĂ©e. Enfin, nous avons conclu que ces paramĂštres sont interdĂ©pendants et peuvent avoir des effets similaires. Leur choix doit ĂȘtre effectuĂ© en prenant en considĂ©ration Ă  la fois l’application concernĂ©e, la morphologie du terrain et son occupation du sol afin de minimiser l’erreur des rĂ©sultats finaux et des conclusions

    Digital Elevation Model Quality Assessment Methods: A Critical Review

    No full text
    International audienceDigital elevation models (DEMs) are widely used in geoscience. The quality of a DEM is a primary requirement for many applications and is affected during the different processing steps, from the collection of elevations to the interpolation implemented for resampling, and it is locally influenced by the landcover and the terrain slope. The quality must meet the user's requirements, which only make sense if the nominal terrain and the relevant resolution have been explicitly specified. The aim of this article is to review the main quality assessment methods, which may be separated into two approaches, namely, with or without reference data, called external and internal quality assessment, respectively. The errors and artifacts are described. The methods to detect and quantify them are reviewed and discussed. Different product levels are considered, i.e., from point cloud to grid surface model and to derived topographic features, as well as the case of global DEMs. Finally, the issue of DEM quality is considered from the producer and user perspectives

    Application de la loi de Benford au contrÎle de qualité des modÚles numériques de terrain

    No full text
    International audienceBenford’s law makes the empirical observation of a regularity in the statistical distribution of the first digit in many series of numbers (geography,sport, economy etc.). It has been used to detect accounting or electoral fraud. In the same spirit, we have tried to use it as a realism criterion for digital elevation model quality assessment. The metrics considered are altitude, slope and Strahler order.La loi de Benford fait le constat empirique d’une rĂ©gularitĂ© dans la distribution statistique du premier chiffre dans de nombreuses sĂ©ries de nombres (gĂ©ographie, sport, Ă©conomie etc.). Elle a Ă©tĂ© utilisĂ©e pour dĂ©tecter des fraudes comptables ou Ă©lectorales. Dans le mĂȘme esprit, nous avons cherchĂ© Ă  l’utiliser comme critĂšre de vraisemblance pour Ă©valuer la qualitĂ© des modĂšles numĂ©riques de terrain. Les mĂ©triques considĂ©rĂ©es sont l’altitude, la pente et l’ordre de Strahler

    DIGITAL ELEVATION MODEL VALIDATION WITH NO GROUND CONTROL: APPLICATION TO THE TOPODATA DEM IN BRAZIL

    No full text
    Digital Elevation Model (DEM) validation is often carried out by comparing the data with a set of ground control points. However, the quality of a DEM can also be considered in terms of shape realism. Beyond visual analysis, it can be verified that physical and statistical properties of the terrestrial relief are fulfilled. This approach is applied to an extract of Topodata, a DEM obtained by resampling the SRTM DEM over the Brazilian territory with a geostatistical approach. Several statistical indicators are computed, and they show that the quality of Topodata in terms of shape rendering is improved with regards to SRTM

    Digital elevation model validation with no ground control: application to the topodata dem in Brazil

    No full text
    Digital Elevation Model (DEM) validation is often carried out by comparing the data with a set of ground control points. However, the quality of a DEM can also be considered in terms of shape realism. Beyond visual analysis, it can be verified that physical and statistical properties of the terrestrial relief are fulfilled. This approach is applied to an extract of Topodata, a DEM obtained by resampling the SRTM DEM over the Brazilian territory with a geostatistical approach. Several statistical indicators are computed, and they show that the quality of Topodata in terms of shape rendering is improved with regards to SRTM

    EFFECT OF DIGITAL ELEVATION MODEL MESH SIZE ON GEOMORPHIC INDICES: A CASE STUDY OF THE IVAÍ RIVER WATERSHED - STATE OF PARANÁ, BRAZIL

    No full text
    Abstract: Geomorphometry is the science of quantitative description of land surface morphology by the mean of geomorphic indices extracted from Digital Elevation Models (DEMs). The analysis of these indices is the first and most common procedure performed in several geoscience-related subjects. This study aims to assess the impact of mesh size degradation on different local and regional geomorphic indices extracted for GDEM and TOPODATA DEMs. Thus, these DEMs, having a mesh size of 30 m, were subsampled to 60, 120 and 240 m and then geomorphic indices were calculated using the full resolution DEM and the subsampled ones. Depending on their behavior, these indices are then classified into stable and unstable. The results show that the most affected indices are slope and hydrographic indices such as Strahler order, stream sinuosity and fractal dimension and watershed perimeter, whereas elevation remains stable. It also shows that the effect depends on the presence of the canopy and geological structures in the studied area
    corecore